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Discrete Solution of the Plateau Problem 
and Its Convergence 

By Takuya Tsuchiya* 

Abstract. In this paper we define a discrete solution of the Plateau problem and we prove 
theorems for the convergence of the discrete solution when the contour satisfies a certain 
condition. A numerical example is given. 

1. Introduction. Let D = {(u, v) E R2 1 u2 + V2 < 1) be the unit disk with 
boundary 3D, and let F be a Jordan curve in n-dimensional Euclidean space R , 
n > 2, that is, F is a topological image of aD. The Plateau problem is to find maps 
x(u, v) = (xl(u, v), ..., xn(u, v)) from the closure D of D into R' which have the 
following properties: 

(1) Each xi is continuous on D and harmonic in D. 
(2) The parameters u, v are isothermal in D, that is, 

(1.1) Ixul = lXv 1, (xuv XV) = o, 

where xu = (ax1/au, ..., axnjau) and xv = (ax1/av, ... , axn/iv). 
(3) The restriction of x to aD is a homeomorphism between aD and F, in which 

three fixed points on AD correspond to three fixed points on F. 
The notations 1 1 and (,.) mean Euclidean norm and inner product of R , 

respectively. 
A solution of the Plateau problem is called a minimal surface spanned in F. In [9] 

and [10] numerical methods for approximating minimal surfaces were given. The 
purpose of this paper is to demonstrate that their methods are proper, that is, these 
numerical solutions converge to minimal surfaces in suitable function spaces. 

It is known that the Plateau problem is equivalent to the following variational 
problem. 

Let C(D; R') be the space of continuous maps on D, and let H1(D; Rn) be the 
ordinary Sobolev space (the exact definitions will be given in Section 2). We define 
the class X. of maps by 

(1.2) XI,= {f E C(D; R) n H1(D;R) I f(3D) = F, f aDismonotone}, 
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where monotone means that, for each p e F, (f I aD)-(NP) C aD is connected. XI 
may be empty [6, p. 58], but in this paper we assume that Xr * 0. We choose six 
arbitrary distinct points z1, Z2, Z3 E aD and 1, , 23 E F, and we define the subset 
of XF by 

(1.3) Xr= {f e Xr I 1(zi) = hi, i= 1,2,3}, 

where the superscript "tp" stands for "three-point condition". For f E H1(D; Rn), 

the energy of f on D is defined by 

(1.4) E(f)= 2jf (If i?1f 
2 
)dudV. 

D 

E is called the energy functional. It is well known that f E XP is a minimal surface 
spanned in F if and only if f is a stationary point of the energy functional in X.P. 
In particular, if f is a minimal point of E in XJP, then f is a minimal surface 
spanned in F [4, pp. 107-118]. 

In Section 3 we define a (stable) discrete minimal surface by a variational method 
using the simplest finite element scheme. In Section 5 we prove the convergence of 
the discrete minimal surfaces. 

For the existence of minimal surfaces, Douglas and Rado proved the following 
theorem ([4, pp. 101-105], [6, p. 71]): 

THEOREM A. Let er = inf Ef (f ): f E X}P }. If X'RP 0 0, then there exists a map 
x E XP such that E(x) = er. 

From the above facts, x E X]P in Theorem A is a minimal surface spanned in F. 
Hence we can say that if X1'P # 0, there exists at least one minimal surface in XtP. 

An x as in Theorem A is called a Douglas solution. Note that if n = 2, Theorem A is 
the Riemann Mapping Theorem for domains bounded by Jordan curves. To prove 
Theorem A, the following important lemma was introduced: 

LEMMA B. Let M be a positive constant such that er < M, and let Y be the subset of 
X1t1P defined by Y = { f e XrtP I E(f ) < M }. Then Y is equicontinuous on aD. 

In Section 4 we prove a lemma which is the discrete analogue of Lemma B. That 
lemma will play an important role in the proof of the convergence of discrete 
minimal surfaces. 

2. Function Spaces. In this section we define the function spaces to be used. Let A 
be a compact subset of R2. We define 

(2.1) C(A) = {f: A -R I f iscontinuouson A}, 

with lf IIC(A) = max{If (u, v)I: (u, v) E A), and 

(2.2) C(A; Rn) = {f= (f1,...,f ): A -> Rn I f, e C(A), i = n 

with Ilf IIC(A;R') = max{ Illfllc(A): i . 
For 1 < p < oc, we define 

(2.3) LP(A; R'") = {f= (f1,...,fj): A -* Rn I|f e LP(A), i = n 

with IlfIK11P'(AR') = max{If IILP(A): i = 1,..., n}. 
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Let B be a bounded domain in R2. We define 

(2.4) W1"P(B) = {f LP(B) I f, fv ( LP(B)} 

with 11f11 W""(B) = IIfIILP(B) + IIfuIILP(B) + IfLvI I LP(B), where f, and fv are distribu- 
tional derivatives. We define 

(2.5) W1P (B; R1) = {f = ( fi,...,fn): B -- R' I , W1P(B), i = II...In), 

with 11f11 W"P(B;R') = max{ Jjfl11W1'P(B): i = 1 ,...,n}. When p = 2, we denote 
W1'P(B) and W" P(B; R") by H'(B) and H'(B; Rn), respectively. We define 

(2.6) HM= {f = (f,...,fn): D -Rn fisharmonicin D,i =,...,n}. 

An element of HM is called a harmonic map. 
For simplicity, when there is no confusion, we omit ";Rn" from the notations. 

3. Definition of the Discrete Minimal Surface. Let 2 C D be a triangulation of D, 
that is, 2 is a polygonal domain with the properties that (1) a2, the boundary of Q, 

inscribes aD, and (2) the set n is the union Q = UK, of finite triangles { K, } whose 
interiors are pairwise disjoint and such that all their edges are either an edge of 
another triangle or an edge of the polygon aM. 

With the triangulation 2 we associate the mesh size of 2 defined by 

(3.1) 11= max diam(KI). 

We assume that there exists a positive constant co which is independent of the 
triangulation 2 such that the following inequality holds for each triangle K, C Q: 

(HI) diam(K,)/p(KI) co, 

where p(K,) = supfdiam(S); K, D S: ball). 
Let S. be the set of functions which are continuous on 2 and linear on each 

triangle K,. Let S. be the set of maps from 2 into Rn such that each component 
function belongs to So. Let N. = {b)}N"jN be the set of nodal points of 2 where 
be Q, the interior of , for 1 i < N, and b1 E= 3 for N + 1 - i < N + N'. 

The basis { wi } N C S. of So is defined by 

(3.2) wI(b) = 61J, j < N + N'. 

We assume that the following inequality holds: 

(H2) | I (W, .x + WI, w, y) du dv -<- f or I < i --N, I < j A N + N', i j. 

We say that a triangulation 2 satisfying (H2) is of nonnegative type. We associate the 
admissible class of triangulations of D defined by 

(3.3) AP = {f2 I Z1, Z2, Z3 E No, 2 satisfies (HI), (H2)}. 

When 2 is given, we define 

(3.4) Xr's2 = { f E So I f (No n aD) c F, f I aD is d-monotone}, 

where d-monotone means that the order of nodal points on F is the same as the 
order of nodal points on aD. Let 

(3.5) -1 = {f E X2 I f (zl) = A i = 1,2,3}, 



160 TAKUYA TSUCHIYA 

and let EQ( f ) be the energy functional on 2 defined by 

(3.6) EU(f)= Jf (IfI v 1f2)l dudv. 

We extend f E So to D - as follows: 
If p E aM and p 4 No, there exists an exterior normal half line Lp of aM on p. 

For arbitrary q E Lp n (D - 2), we define f(q) = 1(p). Then the following esti- 
mate is valid: 

(3.7) Ea(f) < E(f) < (1 + CI|)Ea (f) for any f E So, 

where C is a constant which is independent of ? and f. 
Definition 1. Let 2 E SP. 

(DI) f E S. is a d-harmonic function on 2 if Eg(f) < Es(g) for any g E So with 
g = f on M. 

(D2) f= (fl,..., n) e S. is a d-harmonic map on 2 if fi, i = 1,...,n, are 
d-harmonic functions. We denote by HMg the set of d-harmonic maps on Q. 

(D3) Let x E HM n C(D; Rn). f E S. is the FEM solution of x on Q if 

f E HM, and x(b) = f(b) for all b E N. n aD. 
(D4) f C X~r1' is a stable d-minimal surface if there exists a positive constant 8 

such that 

||f-gjjC(Q)< 8 implies Eg(f) < EQ(g) forgE X=iX'. 

(D5) f E X,?Pg is a d-Douglas solution if 

Ea(f ) EinfE(g): g E Xg}. P'a 

From these definitions it is obvious that a stable d-minimal surface is d-harmonic, 
and a d-Douglas solution is a stable d-minimal surface. 

Remark 2. It is known that there exists an unstable minimal surface in XtP if 
there exist two stable minimal surfaces in XJP [4, pp. 236-243]. We can define the 
unstable d-minimal surface similarly as in Definition 1. But a proof of the conver- 
gence of unstable d-minimal surfaces has not yet been obtained. So we do not 
examine unstable d-minimal surfaces in this paper. O 

LEMMA 3. Suppose that Q2 E SP. Then a d-harmonic function f satisfies the discrete 
maximum principle, 

(3.8) min f (s) < f (z) < max f (s) for any z E D. 
seaD seaD 

Proof. We can prove this lemma by direct computation. See [1], [3]. El 

4. Relative Compactness. In this section we prove the relative compactness of 
bounded subsets of X?%Ps when the Jordan curve satisfies a certain condition. This 
fact is the discrete analogue of Lemma B. 

Let Fo c R" be a Jordan arc which connects two distinct points a, b E Rn, and let 
c p a, b be a point on FO. Taking finite points a = xo, xi,..., x, = c,... xm= b 
monotonously on FO, and connecting x_1 and xi, i = 1,..., m, by segments, a 
continuous and piecewise linear arc is defined. We denote by Lro0c the set of such 
arcs. 
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Let F C R' be a Jordan curve and g, (i = 1, 2, 3) be three distinct points on F. 
We define the three Jordan arcs F, by F, = ,i,+i1 i = 1, 2, 3, where t0 = D3 and 

D4= D1 

We say that F = {r, 2, D3 } has the property (A) if F satisfies the following 
condition: 

(A) For an arbitrary positive number E there exists a positive number a such that 
for any q E L i = 1, 2, 3, and any P1, P2 E T - ;- 1, I?1 ) with Ijp - P21 ?1 E, 

- { p1, P2 ) has three connected components q,, i= 1,2,3, with , E and 

D +1E , and the distance between q1j and % is greater then a, i.e., 

(4.1) dist(q1,'q3) >? 

The condition (A) is very restrictive. This condition requires that F should be 
almost like a circle. A contour like in Figure 1 does not satisfy (A). 

~2 

FIGURE 1 

But if n = 2, the condition (A) does not restrict us. See Remark 10. 
Let M be a positive constant with eI < M. We define 

(4.2) Y' ={fE XtPsI | 2 EN SP, E(f ) M}. 

LEMMA 4. Suppose that {F, 1, '2' g3} satisfies (A). Then Y' is equicontinuous on 
aD. 

Proof. For arbitrary z E R2 and arbitrary positive number r, we define 

(4.3) Crz= D nf{wER2:w-z=r}. 

Let f E Y', and let l(Cr z) be the length of the image f (Cr z). The following lemma is 
valid ([4, p. 102], [6, pp. 67-68]): 

LEMMA 5. For arbitrary 8, 0 < 8 < 1, there exists p, 8 < p < 81/2, depending on f 
and z such that 

(4.4) () =I)M < 2/ /(8), 

where X 8 ) = 4M/log(118). 
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The proof of Lemma 4 is by contradiction. Assume that Y' is not equicontinuous 
on MD. Then there exists a positive number en such that for arbitrary 8 > 0 there 
exist Q2 E NP, fe XG S and a,, a2 E aD such that 

(4.5) 1al-a2l < 8 and If(a1)-f(a2) I ? EO. 

Let a be the positive number associated with E = eo in (A). We choose 8 such that 
(a) a > (2 ( ))1/2, and (b) min Iz, - zjI: i j} > 2 81/2. 

For such 3, we take Q E Nt, f E XrQ and al, a2 E aD as in (4.5). Let w be the 
center of the shorter arc a a2. By Lemma 5, there exists a number p with 8 p _< 81/2 
such that l(Cp w) < (27rX(8))1/2. Let bl, b2 be the end points of Cp w aD is divided 
into two connected components by Cpw. An arc Al contains w and, by (b), its 
complement A 2 contains at least two of the points z1, i = 1, 2, 3. Then f (bj), f (a,) 
(j = 1, 2) are on a Jordan arc which is an element of Lr D for some i. 

From (a), 

If(bl) -f(b2) < l(Cpw) < (27JX(8))12 < a, 

and from (4.5) 

If (aj - f(a2) 1 >1 EO 

Because of (A), this is the contradiction, and Lemma 4 is proved. [ 
From Lemma 5 and the Ascoli-Arzela theorem we immediately obtain the 

following 

COROLLARY 6. Let AP D t {On such that lim XI0nI = 0, and let fn e Xr. 
Suppose that { F, A, satisfies (A) and E fjn) are uniformly bounded. Then there exists 
a subsequence { f,, } such that n I aD converges uniformly to a continuous map 

e c(aD) on aD. Moreover, p(aD) = F and .p is monotone. 

5. Convergence of the Discrete Minimal Surfaces. In this section we prove the 
convergence of the discrete minimal surfaces. 

LEMMA 7. Let NP D {f n}n?'=1 such that lim 0I~nl = 0, and let {Wn E n &n= 
be a sequence of d-harmonic maps. 

Suppose that wn I aD converges uniformly to a continuous map p E c(aD). Let w be 
a harmonic map in D with w = 'p on 3D. Then we have 

(5.1) E(w) < liminf Ea (wn). 
11 --+ 00 

Proof. Let { fj }I'1 be harmonic maps with fn = wn on 3D. Since fn I aD converges 
uniformly to (p, and in view of the lower semicontinuity of the energy functional [4, 
p. 11], we have E(w) < liminfn ,0E(f). Since E(f,) < E(wj), and by (3.7), we 
obtain (5.1). Z 

THEOREM 8. Suppose that {t F, ~} satisfies (A). Let Sp 2 {n }?n?=, be such that 
lim, I j QI = 0, and let {x e XP P I 

= be a sequence of the d-Douglas solutions. 
Then there exists a subsequence {X,7 } which converges to one of the Douglas 

solutions x G X2P in the following sense: 

(5.2) lim i X - Xn, II Hl(D) = 0, 
1? -- 00 
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and if x e W1'P(D), p> 2, then 

(5.3) iM ||X - Xn, =- 0. 

If the Douglas solution is unique, then xn converges in the sense of (5.2) and (5.3). 

Proof. Since San are finite-dimensional vector spaces, and Ea" is bounded from 
below with the property that Eu"(f) - so as If -> o for f E X?, it is obvious 
that d-Douglas solutions exist in each Xtr Q. 

Let y be one of the Douglas solutions and fn E X"Pu the FEM solutions of y on 

On. It is well known that 

(5.4) tim 11 y -fn fIHl(D) O 
n - oo 

[2, p.134]. Since Eo(xn) s< EQ(fn), { EQ(x)} is uniformly bounded. Thus, by 
Corollary 6, there exists a subsequence which converges uniformly to a continuous 
map p E C(aD) on aD with the properties of Corollary 6. Let x be a harmonic map 
with x = (p on aD. From Lemma 7 we see that 

(5.5) E(x) < liminf Eu,(X") < lim E(fn) = E(y). 
t? f X 00 n - X 

Hence x is one of the Douglas solutions. 
Let g,, E X2pS be the FEM solutions of x on " By Lemma 3 we have 

(5.6) im II Xn gnj ,C(D) = 

til-_+00 
Cb 

Hence, by (5.4), we obtain 

(5.7) lim IXn, XIIL2(D) =0 

From (5.5), the limit of Eg (X") exists and is equal to E(x). Hence, by standard 
Sobolev space theory, we obtain (5.2). 

It is known [3] that, if x E W1P(D), p > 2, then 

(5.8) liM 11X - gn 11 CO) =? 
fl -_+ 00 

Hence, with (5.6), we obtain (5.3). 
When the Douglas solution is unique, the limit of convergent subsequences of 

{ x,, } is unique. Hence Xn converges in the sense of (5.2) and (5.3). [1 
A sufficient condition for x E W' P(D) (p > 2) can be obtained in the following 

manner. 
We say that the Jordan curve F is of Cm a-class (m >? 1, 0 < a < 1) if there exists 

a homeomorphism -y: 3D -* F such that y E Cm '(aD) and -y'(s) > 0 for all 
s E aD. Cnl a denotes a Holder space. The following theorem is known: 

THEOREM C (NITSCHE [7]). Suppose that F is of CM a-class. Then arbitrary minimal 
surfaces spanned in F belong to Cm a(D). 

Hence, if F E Cl', then arbitrary minimal surfaces spanned in F belong to 
W' P(D), p > 2. This condition is rough but practical enough. 
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A harmonic map x E XJP is said to be an isolated stable minimal surface if there 
exists a constant 8 such that 

0<|Jx-yllc(D)<8 implies E(x)<E(y) forye X'R. 

We have the following theorem: 

THEOREM 9. Suppose that { P, gj } satisfies (A). Let A'P O { n~ ) be such that 

limn - 0 IQn = 0, and let x E XP be an isolated stable minimal surface. Then there 
exists a sequence {Xn E xte X n}= of stable d-minimal surfaces which converges to x 
in the sense of (5.2) and (5.3). 

Proof. Let {f P @ Xt }n be the FEM solutions of x. We define 8-neighbor- 
hoods of fj by 

Bnl (jn~, 8) = h X~Ps n HM.", I If A- h ICD ) 

Since B,1(fw, 8) is a bounded closed set in finite-dimensional Euclidean space, there 
exists xn E Bn(f,1, 8) such that EQ"(Xn) attains the minimum value in Bn(fn, 8). By 
(5.4), { E(x,,)} is uniformly bounded. Hence there exists a subsequence { Xn } which 
converges uniformly to a continuous map (p on aD. Let 4 E XeP be a harmonic map 
with = (p on aD. For arbitrary E > 0 we take sufficiently large n, such that 

I1XIaD - fJIaDlIc(D) < e/2 and K4laD - XiIaDIIC(D) < e/2. By (3.8), we obtain 

11 - X|1C(05) = 1IaD - X aDjc(aD) < E + 11?nJaD - Xnl aD1C(aD)< 
E + 8- 

Hence we show that 114 - XIIC(D) < 8 and E(14) > E(x). From the proof of 
Theorem 8, the inverse inequality holds. Hence, by the assumption on x, we 
conclude that x = 4. Again, from the proof of Theorem 8 we see that Xn converges 
to x in the sense of (5.2) and (5.3). It is clear that Xn are d-minimal surfaces. El 

Remark 10. The condition (A) is strong. But if n = 2 the condition (A) does not 
restrict us. 

Let Do C R2 be an arbitrary simply connected polygonal domain. We can 

approximate the conformal map x-l: Do -* D instead of x: D -* Do. Taking 

suitable A (i = 1, 2, 3) on aD, { aD, A } satisfies (A). Thus for x we have the same 
conclusion as in Theorem 8. 0 

6. A Numerical Example. In this section we give a numerical example. Let n = 2. 
We identify R2 with C by the identification z = u + iv and x = x1 + ix2. Let 

F - {X E C: xj = 1} and gk = e2(k-l)i/3, k = 1,2,3. It is easy to check that 

{ F, k} satisfies (A). We take the corresponding points z1 = 1, Z2 = e4v~73 and 

Z3 = e /7. The conformal map x: D -> D is the unique Douglas solution. The 
exact solution is x = e4f"/3(z - a)/(-z - 1), where a = (1 + V3i)/4. 

Here, we approximate this map on triangulations like in Figure 2, and we compare 
numerical solutions with the exact solution. This triangulation satisfies (H2). 

We employ the generalized Newton method for the computations. For the details 
of the computations, see [9]. We give the results in Table 1. 
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~2 

FIGURE 2 

TABLE 1 
Results of computations 

mesh Size norm | energy| 

1.38918 X 10-1 1.25348 x 10-2 3.128 

9.35603 x 10-2 8.77615 x 10-3 3.13606 

7.01455 x 10-2 6.57107 x 10-3 3.13805 

In Table 1, "norm"~ means max{ Ix(bi) -xh(bZ)I: b1 E NQ} where Xh is the 

numerical solution. 
The computations were carried out using the FACOM M-382 computer system at 

the Computer Center, Kyushu University. 
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